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Background

►Chromate contamination is found throughout the reactor 
areas at Hanford and is discharging to the Columbia River
● Maximum concentrations in groundwater >4,000 µg/L

►Chromate is a particular concern because of the low 
aquatic water quality criterion.
● Drinking water standard – 100 µg/L
● Aquatic water quality criterion – 11 µg/L
● Surface remediation cleanup target – 2.6 mg/kg

►Cr(VI) as chromate is known to be poorly sorbed and 
mobile in groundwater

► In the vadose zone, at low moisture content, physical and 
chemical processes that may affect Cr(VI) mobility were 
not well understood



100-D Area Groundwater Chromate



Study Objectives

►Determine leaching characteristics of Cr(VI) from 100 
Area contaminated sediments

►Elucidate possible Cr(VI) mineral/chemical associations 
that may be responsible for Cr(VI) retention
● Macroscopic desorption studies: 

column experiments
● Micro-scale characterization:  

XMP, XRF, XANES, SEM, XPS, XRD
►Collect experimental data to develop a conceptual model 

of Cr(VI) geochemistry in the Hanford vadose zone to 
provide a basis for testing and selecting potential 
remedial measures



Sample Collection

► Contaminated samples collected 
from 100-B area (100-B/C Area)
● Location A – 100-C-7:1 near 

above ground dichromate and 
sulfuric acid storage tanks west 
of water treatment facility

● Location B – Unplanned 
release, probably from delivery 
of dry sodium dichromate

● Location D – Shallow samples 
from recent spill of pipeline 
liquid

● C5671 – borehole at 100-C-7:1
● C5674 – borehole at 100-C-7, 

east of water treatment plant



Sample Locations
Location B Location D



Additional Sample Material

►2 uncontaminated sediment samples from 100-D Area
● PNNL-003 – Black, coarse sand
● PNNL-004 – Tan sand

►Pipeline liquid
● Recovered from pipeline excavated in the 100-D Area
● ~ 47,000 mg/L chromate



Sample Cr(VI)

Waste
Site

Sample 
Description Sample

Moisture
Content
(wt %)

Centrifuge
Extracted

Cr(VI)
(mg/kg)

Water
Extractable

Cr(VI)
(mg/kg)

Alkaline
Leach 
Cr(VI)

(mg/kg)
100-C-7:1 ~3.7 m bgs.  Near-

surface 
concentration 
prior to excavation 
was ~1200 mg/kg 
Cr(VI).

A1 5.95 104.8 99.2 102.6

A2 11.14 52.6 117.2 350.2

100-B-26 ~1.2-1.8 m bgs.  
Surface stain near 
railway track.  
Samples ~40 cm 
apart.

B1 7.46 387.6 339.7 520.1
B2 6.88 477.7 465.8 649.4

100-C-7 Location of pipeline 
rupture during 
excavation near 
183-C-7 Filter 
Building.  
Samples ~75 cm 
apart.

D 6.66 1240.7 810.4 1042.3



Transport Studies

►Cr(VI) release may be kinetically controlled and rate may 
be a function of fluid residence time – tested with stop-
flow events

►Magnitude of Cr(VI) rebound during stop-flow and rate of 
dissipation provide constraints on sequestration degree 
and mechanisms

►During late phases of stop-flow, rebound concentrations 
will likely be limited by solubility of Cr(VI) solid phase if 
present.



Column Study Methods

►PVC columns packed in 10 g increments; porous plates 
placed on each end

►Synthetic groundwater solution used with bromide as a 
conservative tracer

►Effluent collected in a fraction collector; analyzed for 
Cr(VI), pH, bromide, ICP metals, anions by ion 
chromatography

►CXTFIT  1-D equilibrium sorption code used to calculate 
transport parameters and fit experimental results



► Initial high Cr(VI) declined 
rapidly with most Cr(VI) 
released in the first pore volume

► Long tail indicates the presence 
of a leaching resistant Cr(VI) 
pool

► Initial pH values lower than 
obtained later

► pH of location A2 was lower 
and corresponded to much  
longer tailing
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Long-Term Column 
Experiments: recent spill
vs. aged spill
► Most Cr(VI) released in first pore 

volume
► Long tailing shows presence of 

leaching resistant pool
► Cr(VI) concentrations remained 

above drinking water standard 
(~0.0015 mmol/L) for >30 pore 
volumes

► Peak concentrations measured 
in stop-flow events were time 
dependent.  Equilibrium 
conditions were not attained

► Peak concentrations between 
96 hr stop-flow events 
decreased due to decreasing 
mass of Cr(VI) on sediments 
affects release
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Modeling Results

► CXTFIT model used to calculate 
transport parameters base on the 
bromide breakthrough curves

► Péclet numbers calculated for 
experiments were close to 1 
indicating mixture of advective and 
diffusive control on transport

► Dispersivities < 2 cm were typical for 
laboratory columns

► Cr(VI) desorption fit to 2 site model
► Equilibrium KD values were close to 

0, as expected
► 95-99% of Cr(VI) in sediments was 

associated with the equilibrium 
release fraction

► Small fraction with time-dependent 
desorption released with half-lives of 
76 – 126 hr.
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Contaminated Sediment Reaction with 
Calcium Polysulfide

► Sediments packed in columns 
leached from the bottom up with 
calcium polysulfide solutions

► Fluid residence time ~ 2 hr
► Polysulfide decreased the total 

amount of Cr(VI) leached but 
majority of the Cr(VI) was still 
mobilized in the first pore 
volume

► Cr(VI) mobilization at reaction 
front is an issue that must be 
considered for remedial 
schemes using liquid reductants
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Transport Experiment Summary

► The majority of the Cr(VI) mass was transported without 
significant retardation

► Experimental data showed at least two Cr(VI) pools (fast and 
slow releasing) were present in all tested sediments

► The slow releasing pool was greater in the old spill sediments
► A two-site model described well the Cr(VI) desorption profiles 
► Mass transfer from poorly accessible domains within sediment 

matrix was largely responsible for nonequilibrium desorption
► Barium was not detected in the effluents, indicating that 

BaCrO4 (hashemite) or less-soluble BaCrO4 – BaSO4 solid 
solutions were not controlling Cr(VI) solubility and mobility

► Injection of strong reductant liquids mobilized the soluble 
Cr(VI) ahead of the reacting front, limiting the chemical 
reaction and fixation of the Cr(VI)



Micro-Scale Characterization

►Applied a series of microscopic/spectroscopic methods to 
evaluate the location, valence state, and chemical 
association of chromium in contaminated sediments

►X-ray Microprobe (XMP)
● high sensitivity spatial mapping of chemical distributions through 

X-ray Fluorescence (XRF)
● valence state at selected locations through X-ray Absorption Near 

Edge Spectroscopy (XANES)
►Scanning Electron Microscopy (SEM) & Energy 

Dispersive Spectroscopy (EDS)
● used to evaluate mineralogical context of areas of high chromium 

concentration
►X-ray Photoelectron Spectroscopy (XPS)

● surface analytical method
● evaluate chromium valence state



XMP of Contaminated
Sediments
► Thin sections of sediments 

analyzed
► Area imaged in 10 µm steps 

to determine relative 
concentrations of chromium 
(and other elements) in 
sediments

► Detection limit ~ 1 µg/g
► XANES spectra collected on 

selected spots
► Chromium detectable in all 

samples as grain coatings 
and discrete grains

Cr Maps
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XMP of Leached
Sediments
► Sediments leached with 5 

pore volumes of chromium-
free synthetic groundwater 
to remove weakly bound 
Cr(VI)

► Leached sediments showed 
only a weak chromium 
signal indicating a lack of 
low mobility chromium 
phases

Location A2
Old Spill

Location A2
Old Spill

Location D
Recent Spill



XANES

► Reduced chromium 
observed in small 
concentrated zones within 
grain coatings

► Variable Cr(VI):Cr(III) seen 
at Location A, B, and D

► Only Cr(III) seen after 
leaching

► Sediment 71-1 – only 
Cr(III) detected

Location D
Recent Spill

Location 71-1
20 ft bgs



SEM

► Chromium not 
detected with EDS

► XMP maps used to 
locate area of 
elevated chromium 
for SEM 
examination

► Elevated 
chromium 
associated with 
secondary mineral 
phases and clay 
inclusions

► May host leaching 
resistant fraction in 
pores isolated 
from advective 
flow Cr map

Fe map



Minor Chromium 
Phases in 71-1

► Deeper borehole 
sample 71-1 
showed chromium 
associated with 
minor phases

► One particle 
associated with iron 
oxide (likely 
magnetite)

► One particle 
identified as barium 
chromate

Barium chromateIron oxide containing
chromium



XPS

► Majority of chromium in 
unreacted samples present 
as Cr(VI) with a small 
fraction of Cr(III) from 
reduction at surfaces

► Reduction of Cr(VI) 
occurred in beam so initial 
Cr(III):Cr(VI) ratio was 
estimated from Cr(VI) in 
unleached samples and 
Cr(III) in leached samples

► Surface iron present as 
mixed Fe(II)/Fe(III) 
indicating possible 
mechanism for the limited 
chromium reduction 



Summary

►Contaminant chromium remains dominantly Cr(VI) 
present as highly mobile chromate that is removed in first 
pore volume during saturated column leaching 
experiments

►A fraction of the Cr(VI) is removed more slowly.  The 
leaching is limited by physical transport/diffusion from 
restricted pores

►Minor presence of limited solubility Cr(VI) phases was 
observed.

►Some reduction of Cr(VI) to Cr(III) occurs within the 
sediments but only a fraction of the surface Fe(II) appears 
accessible for reaction with Cr(VI)



Summary (cont.)
► Leaching behavior could be adequately described by a 2-site sorption 

model with one “site” showing essentially no retardation
► Tailing of Cr(VI) release was greatest in area of co-disposed Cr(VI) 

and sulfuric acid.  The cause of the longer tailing was not apparent in 
these samples.

► BaCrO4 solid was only seen in a sample collected ~20 ft bgs.  Minor 
Cr(VI) reduction observed
● Question remains as to whether extended contact with sediments during 

transport to the deep vadose zone (i.e. high sediment to solution 
ratios/extended reaction progress) will significantly affect the Cr(VI) 
geochemistry in the deep vadose zone.

► Cr(VI) in leaching experiments remained above water quality criteria 
for 10s of pore volumes
● Impact of slow-release Cr(VI) tailing on groundwater will depend on the 

recharge rate
► Liquid reductant mobilized Cr(VI) at solution front so effectiveness for 

remediation was limited
● Both physical and chemical processes need to be understood for 

remedial design
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